Dawn on Mars

Image credit: NASA / JPL-Caltech

Planetary science

Where does Martian dust come from?

New study suggests much of the dust on the surface of Mars comes from a single geological formation near the planet's equator

Name
Jill Rosen
Email
jrosen@jhu.edu
Office phone
443-997-9906
Cell phone
443-547-8805
Twitter
JHUmediareps

The dust that coats much of the surface of Mars originates largely from a single geological formation, a thousand kilometers long, located near the Red Planet's equator, scientists have found.

A study published in the journal Nature Communications found a chemical match between dust in the Martian atmosphere and the surface feature, called the Medusae Fossae Formation.

"Mars wouldn't be nearly this dusty if it wasn't for this one enormous deposit that is gradually eroding over time and polluting the planet, essentially," said co-author Kevin Lewis, an assistant professor in the Department of Earth and Planetary Sciences in the Krieger School of Arts and Sciences.

Black and white image of a crater and soft rock formation

Image caption: “Mars wouldn’t be nearly this dusty if it wasn’t for this one enormous deposit that is gradually eroding over time and polluting the planet, essentially,” says Kevin Lewis.

Image credit: High Resolution Stereo Camera / European Space Agency

In the film The Martian, a dust storm leads to a series of events that strands an astronaut played by actor Matt Damon. As in the movie, dust on Mars has caused problems for real missions, including the Spirit Mars exploration rover. The fine, powdery stuff can get into expensive instruments and obscure solar panels needed to power equipment.

On Earth, dust is separated from soft rock formations by forces of nature including wind, water, glaciers, volcanoes, and meteor impacts. For more than 4 billion years, however, streams of water and moving glaciers have likely made but a small contribution to the global dust reservoir on Mars. While meteor craters are a common feature on the fourth planet from the sun, the fragments created by the impacts typically are bigger than the fine particles that comprise Martian dust.

"How does Mars make so much dust, because none of these processes are active on Mars?" said lead author Lujendra Ojha, a postdoctoral fellow in Lewis' lab. Although these factors may have played a role in the past, something else is to blame for the large swathes of dust surrounding Mars now, he said.

Ojha and the science team looked at the dust's chemical composition. Landers and rovers far apart on the planet have all reported surprisingly similar data about the dust. "Dust everywhere on the planet is enriched in sulfur and chlorine and it has this very distinct sulfur-to-chlorine ratio," Ojha said.

They also studied data captured by the spacecraft Mars Odyssey, which has orbited the planet since 2001. Ojha and his colleagues were able to pinpoint the Medusae Fossae Formation region as having an abundance of sulfur and chlorine, as well as a match to the ratio of sulfur to chlorine in Mars dust.

Earlier findings suggest that the MFF had a volcanic origin. Once 50 percent of the continental United States in size, the wind has eroded it, although it is the largest known volcanic deposit in our solar system.

Wind-carved ridges known as yardangs are the remnants of erosion. By calculating how much of the MFF has been lost over the past 3 billion years, the scientists could approximate the current quantity of dust on Mars, enough to form a global layer that's between 2 and 12 meters thick.

Dust particles can also affect Martian climate by absorbing solar radiation, resulting in lower temperatures at the ground level and higher ones in the atmosphere. This temperature contrast can create stronger winds, leading to more dust being lifted from the surface.

While seasonal dust storms happen every Martian year (which is twice as long as an Earth year), global dust storms can form about every 10 or so years.

"It just explains, potentially, one big piece of how Mars got to its current state," Lewis said.

Posted in Science+Technology

Tagged undefined