HEMI Seminar: Minta Akin

April 26, 2019
3:30 - 4:30pm EDT
This event is free

Who can attend?

  • General public
  • Faculty
  • Staff
  • Students

Contact

Hopkins Extreme Materials Institute
410-516-7257

Description

The Hopkins Extreme Materials Institute is pleased to welcome Dr. Minta Akin, physicist at Lawrence Livermore National Laboratory, for a seminar titled "It's All a Hot Mess: Temperature and Heterogeneity in Shock Physics."

Abstract:

Shock physics is a powerful tool to study materials at extreme conditions. Work in this area has led to high quality pressure-density data for many materials, especially homogeneous systems such as metals and single crystals. The resulting thermodynamic data partially determines equation of state (EOS) and reveals valuable material properties at conditions far from ambient.

However, a complete EOS requires measurements of a third thermodynamic variable, such as bulk temperature or entropy. High-quality data in this area has been elusive, and many difficulties exist, including poor constraints on heat transport within materials and across interfaces at high pressure, the effects of emissivity, large extrapolations from calibration points, and converting surface temperatures to bulk temperatures. I will discuss how our work on materials such as LiF, Sn, and Fe addresses these issues through experiments, simulations, and theory to accelerate the development of new models and fundamentally advance our understanding of materials.

Heterogenous systems, such as granular media and foams, pose further technical challenges. These materials are far more common and varied than their homogeneous counterparts—just think of sand compared to quartz!—with multiple interacting variables such as grain size, shape, and local density in addition to classic variables such as bulk density. To measure all of the varieties one might wish to understand is impractical and inefficient. Instead, we must have robust models for the micromechanical response and EOS. High precision dynamic and static measurements are essential to develop these models, yet most measurements of heterogeneous materials suffer from (often much) larger uncertainties than their homogeneous counterparts. As a result, the very models we need most lag behind.

To close this gap we focus on three major areas: identifying and controlling the sources of uncertainty, developing models to understand the dynamic response of these materials, and designing new classes of experiments to inform these models. The variation that defines these materials makes it much harder to create well-controlled samples and to measure their dynamic response to compressive loading. We estimate the contribution to uncertainty by sample variation such as cracking, intra-sample density variation, and density/packing variation between samples. I will discuss how we control these issues during target fabrication and metrology, and how much variation one should expect if advanced metrology tools such as CT are not available. I will also discuss the results of our recent quasi-static and dynamic experiments examining compaction, failure, and the development of force networks, and the limitations and successes of our mesoscale models.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Who can attend?

  • General public
  • Faculty
  • Staff
  • Students

Contact

Hopkins Extreme Materials Institute
410-516-7257