Chemical and Biomolecular Engineering Seminar Series (Virtual): Paul J. Dauenhauer

Description
Paul J. Dauenhauer, a professor and MacArthur Fellow at the University of Minnesota in the Department of Chemical Engineering and Materials Science, will give a talk titled "Programmable Materials for Chemical Conversion: The Catalytic Mechanics of Dynamic Surfaces" as part of the Chemical and Biomolecular Engineering Seminar Series.
The Zoom link is available on the department event webpage (Meeting ID: 999 7571 3314 | Passcode: 442921).
Abstract:
The emergence of competitive renewable energy from sunlight and wind heightens the importance of moving and storing energy from the place of origin to the locations where people live and work. Chemically capturing energy as compressed hydrogen or energy liquids including hydrocarbons and ammonia remains a leading method of energy storage based on density and fungibility, but the catalytic technology necessary for transformation of electricity into chemicals in small, distributed energy systems is the key challenge for implementation. In this work, we propose to utilize electronically tunable catalytic surfaces (catalytic field effect transistors) to promote the reactions of hydrogen production and hydrogen storage as ammonia. The general approach of programmable catalyst operation is described as oscillatory binding energy of adsorbates on active sites as a method to dramatically accelerate the rate of catalytic reaction. Surface oscillations in sinusoidal and square waveforms of transient binding energy are imposed on catalyst surfaces with varying amplitude and frequency to identify the resonance conditions leading to 10,000x enhancement in overall reaction rate. The results are presented in the context of catalyst-reaction behavior and with regard to implementation in industrial reactor technologies necessary for moving and storing renewable energy.
Who can attend?
- General public
- Faculty
- Staff
- Students