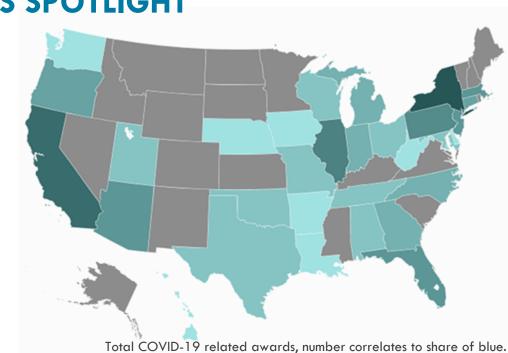
COVID-19 RESPONSE FUNDING UPDATE

APRIL 10-16, 2020


FACTS

\$14,443,702 FUNDS MOBIL<u>IZED</u>

106 GRANTS FUNDED

OVERVIEW

In response to the COVID-19 virus, the National Science Foundation (NSF) is mobilizing funding from the FY2020 budget and supplemental appropriations through the Coronavirus Aid, Relief, and Economic Security (CARES) Act. CARES Act funding supports a wide range of research areas to help the country fight and recover from the COVID-19 crisis through several research funding mechanisms including Rapid Response Research (RAPID), a fast-tracked grant process to accelerate critical discovery.

AWARDS SPOTLIGHT

	CARES ACT	All COVID-19	
Number of Awards	20	106	
Funding Deployed	\$3,003,123	\$14,443,702	

This update spotlights several recent awards, just a snapshot of the essential work NSF is funding through the CARES Act and FY2020 appropriations. You can explore all of the COVID-19 related research grants awarded through the <u>National Science Foundation here</u>.

CHEMICAL, BIOENGINEERING, ENVIRONMENTAL AND TRANSPORT SYSTEMS CARES Act <u>\$200,000</u>

Title	RAPID: Flow Asymmetry in Human Breathing and the Asymptomatic Spreader
Institution/Loc	Princeton University, Princeton, New Jersey
What	This research will explore how viruses move through the air as asymptomatic individuals speak and breathe during social interaction.
Why	Understanding how a virus moves through the air will help target mitigation strategies like wearing face masks and maintaining physical distance.

CHEMICAL, BIOENGINEERING, ENVIRONMENTAL AND TRANSPORT SYSTEMS CARES Act <u>\$199,958</u>

- TitleRAPID: Computational Modeling of Contact Density and OutbreakEstimation for COVID-19 Using Large-scale Geolocation Data from Mobile
Devices
- Institution/Loc New York University, New York, New York
- What Using a large-scale geolocation dataset from smart phones, researchers will develop a model to estimate contact density, measure the efficacy of social distancing and predict disease spread. The NYU Institutional Review Board approved processing these data.
- Why This computation model could better empower public health officials in containment efforts, outbreak prediction, and identify at-risk communities based on socioeconomic vulnerabilities.

COMPUTING AND COMMUNICATION FOUNDATIONS CARES Act \$100,551

Title	RAPID: Accelerated Testing for COVID-19 using Group Testing
Institution/Loc	Texas A&M Engineering Experiment Station, College Station, Texas
What	Researchers are designing new approaches that allow multiple COVID-19 tests to be processed at once.
Why	Increasing the efficiency of processing COVID-19 tests will help diagnose patients faster, use fewer testing resources, and provide additional information for tracking infection rates.

MOLECULAR AND CELLULAR BIOSCIENCES CARES Act <u>\$188,253</u>

Title	RAPID: Factors Contributing To Sequence Conservation in the SARS-CoV-2 Genome
Institution/Loc	Rutgers University Camden, Camden, New Jersey
What	Using data from viral sequencing, this research will help meet the urgent need for understanding how the SARS-CoV-2 virus evolves.
Why	Understanding the viral genome and its evolution is critical for effective testing and anti-viral drug development. Findings from this research will be made available on a public database prototype.

BEHAVIORAL AND COGNITIVE SCIENCES CARES Act <u>\$199,448</u>

Title	RAPID: Assessing and preventing detrimental impacts on literacy acquisition during COVID-19-related school closures
Institution/Loc	Haskins Laboratories, Inc. New Haven, Connecticut
What	School closures, such as those imposed by COVID-19, could have a negative impact on the development of basic reading skills in early grade school children. This is especially true for children with learning disorders in special education, for whom online learning is much more challenging.
Why	Teachers and their K-2 students across the country will help researchers test whether a digital game based on cutting-edge reading research can maintain and strengthen basic reading skills. Successful remote learning applications and techniques may help overcome the decline in basic reading skills during school closures now and in the future. The findings could also be useful for teaching students in areas in the U.S. where trained reading specialists are not readily available.